ComputerScience@Univaq
  •   Univaq
  • Informatica@Aq
  • Offerta Formativa
    • Corsi
    • Laurea Base
    • Laurea Magistrale
    • Laurea Magistrale Internazionale
    • Master Web Technology
    • Dottorato di Ricerca
  • Chi Siamo
  • Iscriversi
  • Contatti
  •   Univaq
  • Informatica@Aq
  • Offerta Formativa
    • Corsi
    • Laurea Base
    • Laurea Magistrale
    • Laurea Magistrale Internazionale
    • Master Web Technology
    • Dottorato di Ricerca
  • Chi Siamo
  • Iscriversi
  • Contatti

Network Flows

Teachers
Fabrizio Rossi
Category:
Affine/ Laurea Magistrale/
bannerlm
Duration: Semestrale

SILLABO

Module Network Flows

  • Network Flows Problem: introduction and definitions
  • Maximum Flows and the path packing problem. Flows and cuts: Max-Flow/Min-Cut theorem. Augmenting path algorithms: Ford and Fulkerson algorithm, Edmonds and Karp algorithm. Generic Preflow-Push algorithm. Flows with lower bounds.
  • Maximum Flows: additional topics and applications. Flows in Unit Capacity Networks. Flows in Bipartite Networks. Network Connectivity.
  • Minimum Cuts. Global Minimum Cuts. Node Identification Algorithm. Random Contraction. Applications.
  • Minimum-Cost Flow Problems. Definition and applications. Optimality Conditions. The Ford-Bellman algorithm for the shortest path problem. Primal algorithms: Augmenting Circuit Algorithm for the Min Cost Flow Problem.
  • Network Simplex Algorithms. Applications of Min Cost Flows.

Module Network Optimization

  • Formulations of Integer and Binary Programs: The Assignment Problem; The Stable Set Problem; Set Covering, Packing and Partitioning; Minimum Spanning Tree; Traveling Salesperson Problem (TSP); Formulations of logical conditions.
  • Mixed Integer Formulations: Modeling Fixed Costs; Uncapacitated Facility Location; Uncapacitated Lot Sizing; Discrete Alternatives; Disjunctive Formulations.
  • Optimality, Relaxation and Bounds. Geometry of R^n: Linear and affine spaces; Polyhedra: dimension, representations, valid inequalities, faces, vertices and facets; Alternative (extended) formulations; Good and Ideal formulations.
  • LP based branch-and-bound algorithm: Preprocessing, Branching strategies, Node and variable selection strategies, Primal heuristics.
  • Cutting Planes algorithms. Valid inequalities. Automatic Reformulation: Gomory’s Fractional Cutting Plane Algorithm. Strong valid inequalities: Cover inequalities, lifted cover inequalities; Clique inequalities; Subtour inequalities. Branch-and-cut algorithm.
  • Software tools for Mixed Integer Programming.
  • Lagrangian Duality: Lagrangian relaxation; Lagrangian heuristics.
  • Network Problems: formulations and algorithms. Constrained Spanning Tree Problems; Constrained Shortest Path Problem; Multicommodity Flows; Symmetric and Asymmetric Traveling Salesman Problem; Vehicle Routing Problem; Steiner Tree Problem; Network Design.
  • Heuristics for network problems: local search, tabu search, simulated annealing, MIP based heuristics.

Requisiti

Web

Link Corso

About Instructor

Fabrizio Rossi
Si occupa di Modellazione e Soluzione di Problemi di Ottimizzazione, e di Applicazioni Industriali dell’Ottimizzazione nei settori delle Telecomunicazioni, della Produzione Manifatturiera e della Logistica.

Reviews

Average Rating

0
0 Ratings

Detailed Rating

Stars 5
0
Stars 4
0
Stars 3
0
Stars 2
0
Stars 1
0
Duration: Semestrale
Footer logo
Copyright © 2017 by Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica
  • home
  • iscriversi
  • Eventi
Search